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Uncertainty measure of Atanassov’s
intuitionistic fuzzy T equivalence
information systems
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Abstract. Atanassov’s intuitionistic fuzzy T equivalence information systems are natural extensions of fuzzy T equivalence
information systems. The aim of this paper is to investigate the uncertainty measures of knowledge in Atanassov’s intuitionistic
fuzzy T equivalence information systems. At the first, we introduce the concepts of knowledge granulation, knowledge entropy
and knowledge uncertainty measure in Atanassov’s intuitionistic fuzzy T equivalence information systems, and some important
properties of them are studied. From these properties, it can be shown that these measures provide important approaches to mea-
suring the discernibility ability of different knowledge in Atanassov’s intuitionistic fuzzy T equivalence information systems. And
relationships among knowledge granulation, knowledge entropy and knowledge uncertainty measure are considered. Furthermore,
we introduce the definition of rough entropy of rough sets in Atanassov’s intuitionistic fuzzy T equivalence information systems.
By an example, it is shown that the rough entropy of rough set is more accurate than natural extension of classical rough degree
to measure the roughness of rough set in Atanassov’s intuitionistic fuzzy T equivalence information systems.
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1. Introduction

The theory of rough sets, proposed by Pawlak
[19, 20], is a powerful mathematical approach to deal
with inexact, uncertain or vague knowledge. It has been
successfully applied to various fields of artificial intel-
ligence such as pattern recognition, machine learning,
and automated knowledge acquisition. In recent years,
The generalization of classical rough set model is one
of the most important study spotlights.

It is widely acknowledge that classical Pawlak rough
set theory is based on an assumption that every object
in the universe of discourse is associated with some
information. In many practical issues, it may happen
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that some of the attribute values for an object are a pair
of fuzzy-valued. For this reason, in 1986, Atanassov
[1] proposed the concept of an Atanassov’s intuitionis-
tic fuzzy (IF) set, which is very effective to deal with
vagueness. The concept of IF set is a generalization
of the fuzzy set [37] defined by a pair of member-
ship functions which is a membership degree and a
non-membership degree. The membership and non-
membership values induce an indeterminacy index,
which models the hesitancy of deciding the degree to
which an object satisfies a particular property. As a gen-
eralization of the fuzzy set, the concept of IF set has
played an important role in the analysis of uncertainty
of data. Recently, IF set theory has been successfully
applied in decision analysis and pattern recognition
[3, 8, 9, 11, 13, 18, 28, 31, 35, 36, 39, 40].

Combining IF set theory and rough set theory may
result in a new hybrid mathematical structure for the
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requirement of knowledge-handling systems. Research
on this topic has been investigated by a number
of authors. Coker [4] first revealed the relationships
between IF set theory and rough set theory and showed
that a fuzzy rough set was in fact an Atanassov’s intu-
itionistic L fuzzy set. Various tentative definitions of
IF rough sets were explored to extend rough set theory
to the IF environment [5, 6, 12, 24–26]. For example,
according to fuzzy rough sets in the sense of Nanda and
Majumda [17], Jena and Ghosh [12] and Chakrabarty
et al. [5] independently proposed the concept of an IF
rough set in which the lower and upper approximations
are both IF sets.

Entropy is an important concept proposed by Shan-
non [27] to evaluate uncertainty of a system. It is
a very useful mechanism for characterizing informa-
tion contents in various modes and has been applied
in diverse fields. Wei et al. [30] propose an entropy
measure for interval-valued Atanassov’s intuitionistic
fuzzy sets and give an approach to construct similar-
ity measures by entropy measures for interval-valued
Atanassov’s intuitionistic fuzzy sets. The extension of
entropy and its variants were adapted for rough set in
[2, 10, 14, 21, 29]. For example, Duentsch and Gediga
defined the information entropy and three kinds of con-
ditional entropy in rough sets for predicting a decision
attribute [10]. Beaubouef et al. [2] proposed a method
measuring uncertainty of rough sets and rough relation
databases based on rough entropy. Wierman [29] pre-
sented the measures of uncertainty and granularity in
rough set theory, along with an axiomatic derivation.
Liang et al. [14] proposed a new method for evalu-
ating both uncertainty and fuzziness. Qian and Liang
[21] proposed a combination entropy for evaluating
uncertainty of a knowledge from an information sys-
tem. Beaubouef et al. [2] proposed a method measuring
uncertainty of rough sets and rough relation databases
based on rough entropy. All these studies were ded-
icated to evaluating uncertainty of a set in terms of
the partition ability of a knowledge. As a powerful
mechanism, granulation was introduced by Zadeh [38].
It presents a more visual and easily understandable
description for a partition on the universe. From the
viewpoint of granulation, several measures on knowl-
edge in an information system were proposed and the
relationships among these measures were discussed by
Liang et al. in [15, 16]. These measures include gran-
ulation measure, information entropy, rough entropy,
and knowledge granulation, and have become effec-
tive mechanisms for evaluating uncertainty in rough set
theory. Qian et al. studied knowledge granulation in a

knowledge base [22], and fuzzy information granularity
in a binary granular structure [23]. Xu et al. [32] intro-
duced concepts of knowledge granulation, knowledge
entropy and knowledge uncertainty measure in ordered
information systems.

So far, however, uncertainty measures in IF T equiv-
alence information systems have not been reported. In
this paper, we aim to address uncertainty measure issue
in IF T equivalence information systems. This paper
introduces knowledge granulation, knowledge entropy
and knowledge uncertainty measure into IF T equiva-
lence information systems, and discuss some properties
of them. It is shown that these proposed measures pro-
vide approaches to measuring the discernibility ability
of different knowledge in set-valued information sys-
tems.

The rest of this article is organized as follows. In
Section 2, we recall the basic contents of IF infor-
mation system and IF rough sets based on IF T
equivalence relation . In Section 3–5, knowledge gran-
ulation, knowledge entropy and knowledge uncertainty
measure are introduced in IF T equivalence infor-
mation systems, and some important properties of
them are discussed. In Section 6, we investigate the
relationships and differences among knowledge granu-
lation, knowledge entropy and knowledge uncertainty
measure. Finally, as an application of knowledge gran-
ulation, we introduce definition of rough entropy of
rough set in ordered information systems in Section
7. By an example, it is shown that the rough entropy
of rough set is more accurate than the natural extension
of classical rough degree to measure the roughness of
rough set in IF T equivalence information systems.

2. Atanassov’s intuitionistic fuzzy rough sets
and Atanassov’s intuitionistic fuzzy T
equivalence information systems

In this section, we mainly introduce the basic con-
tents of IF information system and IF rough sets based
on IF T equivalence relation. We omit review of tradi-
tional rough set theory and detailed description of the
rough set theory be found in the source papers [19].

Definition 2.1. [7] Let L∗ = {(α1, α2) ∈ I2|α1 + α2 ≤
1}. We define a relation ≤L∗ on L∗ as follows: for
all (α1, α2), (β1, β2) ∈ L∗, (α1, α2) ≤L∗ (β1, β2) ⇔
α1 ≤ β1 and α2 ≥ β2. Then the relation ≤L∗ is a
partial ordering on L∗ and the pair (L∗, ≤L∗ ) is a
complete lattice with the smallest element 0L∗ = (0, 1)
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and the greatest element 1L∗ = (1, 0). The meet oper-
ator ∧, join operator ∨ and complement operator
∼ on (L∗, ≤L∗ ) which are linked to the ordering
≤L∗ are, respectively, defined as follows: for all
(α1, α2), (β1, β2) ∈ L∗,

(α1, α2) ∧ (β1, β2) = (min(α1, β1), max(α2, β2)),
(α1, α2) ∨ (β1, β2) = (max(α1, β1), min(α2, β2)).
∼ (α1, α2) = (α2, α1).

Meanwhile we introduce an order relation ≥L∗ on L∗
as follows: for all α = (α1, α2), β = (β1, β2) ∈ L∗,

(β1, β2) ≥L∗ (α1, α2) ⇔ (α1, α2) ≤L∗ (β1, β2),
α = β ⇔ α ≤L∗ β and β ≤L∗ α ⇔ α1 = β1, α2 =

β2,
α <L∗ β ⇔ α ≤L∗ β and α /= β.

Definition 2.2. [1] Let a set U be fixed. An IF set Ã in
U is an object having the form

Ã = {〈x, µ
Ã

(x), ν
Ã

(x)〉|x ∈ U},

where µ
Ã

: U → I and ν
Ã

: U → I satisfy 0 ≤
µ

Ã
(x) + ν

Ã
(x) ≤ 1 for all x ∈ U, µ

Ã
(x) and ν

Ã
(x) are

called the degree of membership and the degree of
non-membership of the element x ∈ U to Ã, respec-
tively. The family of all IF subsets of U is denoted by
IF (U). The complement of an IF set Ã is defined by
∼ Ã = {〈x, ν

Ã
(x), µ

Ã
(x)〉|x ∈ U}.

Obviously, every fuzzy set Ã = {〈x, µ
Ã

(x)〉|x ∈ U}
can be identified with the IF set of the form Ã =
{〈x, µ

Ã
(x), 1 − µ

Ã
(x)〉|x ∈ U}. We denote the family

of all fuzzy subsets of U as F (U).

Definition 2.3. [1] If Ã, B̃ ∈ IF (U), then,

(1) Ã ⊆ B̃ ⇔ µ
Ã

(x) ≤ µ
B̃

(x) and ν
Ã

(x) ≥ ν
B̃

(x) for
all x ∈ U,

(2) Ã ⊇ B̃ ⇔ B̃ ⊆ Ã,
(3) Ã = B̃ ⇔ Ã ⊆ B̃ and B̃ ⊆ Ã,

Definition 2.4. [1] If Ã, B̃ ∈ IF (U), then,

(1) Ã ∩ B̃ = {〈x, min(µ
Ã

(x), µ
B̃

(x)), max(ν
Ã

(x),
ν
B̃

(x))|x ∈ U〉},
(2) Ã ∪ B̃ = {〈x, max(µ

Ã
(x), µ

B̃
(x)), min(ν

Ã
(x),

ν
B̃

(x))|x ∈ U〉}.

For α = (α1, α2) ∈ L∗, α̃ = (α̂1, α2) will be denoted
by the constant IF set: α̃(x) = (α̂1, α2)(x) = (α1, α2),
for all x ∈ U. In particularly, if a ∈ I we denote ã as a
constant fuzzy set, i.e., ã(x) = a for all x ∈ U.

For any y ∈ U, IF set 1̃y and 1̃U−{y} are, respectively,
define as follows: for x ∈ U,

µ
1̃{y}

(x) =
{

1, if x = y,

0. if x /= y.
ν̃

1{y}
(x) =

{
0, if x = y,

1. if x /= y.

µ
1̃U−{y}

(x)=
{

0, if x = y,

1. if x /= y.
ν̃

1U−{y}
(x) =

{
1, if x = y,

0. if x /= y.

The IF universe set is 1̃U = ](1, 0) = 1̃L∗ =
{〈x, 1, 0〉|x ∈ U} and the IF empty set is
1̃∅ = ](0, 1) = 0̃L∗ = {〈x, 0, 1〉|x ∈ U}.

Definition 2.5. [1] A fuzzy triangular norm (briefly
fuzzy t-norm) on I is an increasing, commutative, asso-
ciative mapping T : I × I → I satisfying T (1, a) = a

for all a ∈ I.
A fuzzy triangular t-conorm (briefly fuzzy t-conorm)

on I is an increasing, commutative, associative mapping
S : I × I → I satisfying S(0, a) = a for all a ∈ I.

A fuzzy t-norm T and a fuzzy t-conorm S on I are
said to be dual with respect to complement operator ∼,
if for all a, b ∈ I,

S(a, b) =∼ T (1 − a, 1 − b) = 1 − T (1 − a, 1 − b).

Definition 2.6. [7] An IF t-norm T (respectively, t-
conorm S) on L∗ can be defined by fuzzy t-norm T

( t-conorm S) as follows:
T (α, β) = (T (α1, β1), S(α2, β2)),
S(α, β) = (S

′
(α1, β1), T

′
(α2, β2)),

for all α = (α1, α2), β = (β1, β2) ∈ L∗

Definition 2.7. Let T be a fuzzy t-norm on I and S the
dual of T . Two fuzzy residual implication by the T and
S can be defined as follows:

θ(a, b) = sup{c ∈ I|T (a, c) ≤ b}, φ(a, b) = inf{c ∈
I|S(a, c) ≥ b},
for any a, b, c ∈ I.

Now, we define the following two IF implication on
L∗: for all α = (α1, α2), β = (β1, β2) ∈ L∗,

�(α, β) = (φ(1 − α2, β1), θ(1 − α1, β2)),
�(α, β) = (θ(1 − α2, β1), φ(1 − α1, β2)).

Proposition 2.1. Let θ be a fuzzy residual implication
and φ be the dual of θ, for any a, b ∈ I, then φ(∼ a, ∼
b) =∼ θ(a, b).

Obviously, it can be seen that �(α, β) =∼ �(∼ α, ∼
β), for all α = (α1, α2), β = (β1, β2) ∈ L∗.
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Definition 2.8. [3] An IF binary relation R̃ on U is an
IF subset of U × U, namely, R̃ is given by

R̃ = {〈(x, y), µ
R̃

(x, y), ν
R̃

(x, y)〉|(x, y) ∈ U × U},
where µ

R̃
: U × U → I and ν

R̃
: U × U → I,

0 ≤ µ
R̃

(x, y) + ν
R̃

(x, y) ≤ 1 for all (x, y) ∈ U × U.
IFR(U × U) will be used to denote the family of all IF
relations on U.

Definition 2.9. [3] Let R̃ ∈ IFR(U × U), we say that

(1) R̃ is referred to as an IF reflexive relation if for any
x ∈ U, R̃(x, x) = (1, 0).

(2) R̃ is referred to as an IF symmetric relation if for
any x, y ∈ U, R̃(x, y) = R̃(y, x).

(3) R̃ is referred to as an IF T transitive relation if for
any x, y, z ∈ U, R̃(x, z) ≥L∗ T (R̃(x, y), R̃(y, z)).

If R̃ is IF reflexive, IF symmetric and IF T transitive on
U, then we say that R̃ is an IF T equivalence relation
on U.

An IF T equivalence class [xi]R̃ of xi ∈ U

is an IF set, denoted as: [xi]R̃ = (µ[xi]
R̃
, ν[xi]

R̃
),

where µ[xi]
R̃

= (µ
R̃(i,1), µR̃(i,2), . . . , µR̃(i,n)), µ

R̃(i,j) =
µ

R̃
(xi, xj) and ν[xi]

R̃
= (ν

R̃(i,1), νR̃(i,2), . . . , +ν
R̃(i,n)),

ν
R̃(i,j) = ν

R̃
(xi, xj). The IF T equivalence class is an

IF knowledge granule, the elements in the class are IF
T equivalent indiscernible. The family of the IF equiva-
lence classes [xi]R̃, written as U/R̃ = {[xi]R̃|xi ∈ U} is
called an IF quotient set (or classification) of U induced
by R̃.

There are two kinds of special case of classification
U/R̃, i.e., the discrete case and the indiscrete case. The
discrete case is defined as:

U/ĨR : U/ĨR = {[xi]ĨR
= 1̃{xi}|xi ∈ U}.

The indiscrete case is defined as:

U/δ̃R : U/δ̃R = {[xi]δ̃R
= 1̃U |xi ∈ U}.

An IF information system [33, 34] is an ordered quadru-
ple I = (U, AT, V, f ), where U = {x1, x2, . . . , xn} is a
non-empty finite set of objects, AT = {a1, a2, . . . , ap}
is a non-empty finite set of attributes, V = ⋃

a∈AT

Va

and Va is a domain of attribute a, f : U × AT → V

is a function such that f (x, a) ∈ Va, for each a ∈ AT ,
x ∈ U, called an information function, where Va is an
IF set of the universe U. That is

f (x, a) = (µa(x), νa(x)), for all a ∈ AT,

Table 1
An IF information system

U a1 a2 a3 a4 a5

x1 (0.4, 0.6) (0.8, 0.1) (0.6, 0.3) (0.9, 0.0) (0.7, 0.1)
x2 (0.3, 0.5) (0.7, 0.3) (0.5, 0.1) (0.7, 0.1) (0.6, 0.3)
x3 (0.5, 0.3) (0.8, 0.1) (0.7, 0.1) (1.0, 0.0) (0.7, 0.1)
x4 (0.6, 0.3) (0.9, 0.0) (0.7, 0.1) (0.8, 0.2) (0.8, 0.0)
x5 (0.9, 0.1) (0.9, 0.0) (0.8, 0.1) (0.6, 0.3) (1.0, 0.0)

where µa : U → [0, 1] and νa : U → [0, 1] satisfy 0 ≤
µa(x) + νa(x) ≤ 1, for all x ∈ U. µa and νa are, respec-
tively, called the degree of membership and the degree
of non-membership of the element x ∈ U to attribute
a. We denote ã(x) = (µa(x), νa(x)), then it is clear that
ã is an IF set of U. Table 1 shows an IF information
system.

Definition 2.10. An IF T equivalence information sys-
tem is an ordered quintuple Ĩ = (U, AT, V, f, z), where
(U, AT, V, f ) is an IF information system, z is the map-
ping from power set AT into the family set R̃ of IF T
equivalence relation.

Let Ĩ = (U, AT, V, f, z) be an IF T equivalence
information system, for A ⊆ AT , a ∈ A, R̃a ∈ R̃ be an
IF T equivalence relation respect to attribute a. Denotes
R̃A = ⋂

a∈A

R̃a.

For simplicity, the examples throughout the paper
will exploit the relation R̃a as following: R̃a(xi, xj) =
(µ

R̃a
(xi, xj), ν

R̃a
(xi, xj)), where, µ

R̃a
(xi, xj) = 1 −

max{|µa(xi) − µa(xj)|, |νa(xi) − νa(xj)|} and νRa

(xi, xj) = 1
2 (|µa(xi) − µa(xj)| + |νa(xi) − νa(xj)|).

Consider the IF t-norm T : T (α, β) = (max{0, α1 +
β1 − 1}, min{1, α2 + β2}) for α = (α1, α2), β =
(β1, β2) ∈ L∗. Obviously, the relation R̃a is an IF T
equivalence relation.

Definition 2.11. Let Ĩ = (U, AT, V, f, z) be an IF
T equivalence information system. A, B ⊆ AT , and
U/R̃A = {[xi]R̃A

|xi ∈ U}, U/R̃B = {[xi]R̃B
|xi ∈ U} be

classification of two IF T equivalence relations R̃A and
R̃B respectively.

(1) If [xi]R̃A
= [xi]R̃B

for all xi ∈ U, then we call that

classification U/R̃A is equal to U/R̃B, denoted by
U/R̃A = U/R̃B.

(2) If [xi]R̃A
⊆ [xi]R̃B

for all xi ∈ U, then we call that

classification U/R̃A is finer than U/R̃B, denoted
by U/R̃A ⊆ U/R̃B.

(3) If [xi]R̃A
⊆ [xi]R̃B

for all xi ∈ U and [xi]R̃A
⊂

[xi]R̃B
for some xi ∈ U, then we call that classifi-
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cation U/R̃A is properly finer than U/R̃B, denoted
by U/R̃A ⊂ U/R̃B.

We denote R̃A = R̃B ⇔ U/R̃A = U/R̃B, R̃A � R̃B ⇔
U/R̃A ⊆ U/R̃B and R̃A ≺ R̃B ⇔ U/R̃A ⊂ U/R̃B.

Example 2.1. From Table 1, the IF T equivalence rela-
tion R̃AT is computed as follows:

R̃AT =

⎛⎜⎜⎜⎜⎜⎜⎝

(1.0, 0) (0.8, 0.15) (0.7, 0.2) (0.7, 0.25) (0.5, 0.5)

(0.8, 0.15) (1.0, 0) (0.7, 0.2) (0.7, 0.25) (0.4, 0.5)

(0.7, 0.2) (0.7, 0.2) (1.0, 0) (0.8, 0.2) (0.6, 0.35)

(0.7, 0.25) (0.7, 0.25) (0.8, 0.2) (1.0, 0) (0.7, 0.25)

(0.5, 0.5) (0.4, 0.5) (0.6, 0.35) (0.7, 0.25) (1.0, 0)

⎞⎟⎟⎟⎟⎟⎟⎠
If denote A = {a1, a2, a3}, the IF T equivalence rela-

tion R̃A is computed as follows:

R̃A =

⎛⎜⎜⎜⎜⎜⎜⎝

(1.0, 0) (0.8, 0.15) (0.7, 0.2) (0.7, 0.25) (0.5, 0.5)

(0.8, 0.15) (1.0, 0) (0.8, 0.2) (0.7, 0.25) (0.4, 0.5)

(0.7, 0.2) (0.8, 0.2) (1.0, 0) (0.9, 0.1) (0.6, 0.3)

(0.7, 0.25) (0.7, 0.25) (0.9, 0.1) (1.0, 0) (0.7, 0.25)

(0.5, 0.5) (0.4, 0.5) (0.6, 0.3) (0.7, 0.25) (1.0, 0)

⎞⎟⎟⎟⎟⎟⎟⎠
Thus, it is obvious that U/R̃AT ⊆ U/R̃A. We can

say that classification U/R̃AT is finer than classification
U/R̃A, or knowledge R̃AT is finer than R̃A.

Let Ĩ = (U, AT, V, f, z) be an IF T equivalence
information system. X̃ ∈ IF (U) and A ⊆ AT , the �-
upper and �-lower approximations of X̃ with respect
to IF relation R̃A are respectively defined by

R̃A(X̃) = {〈x, µ
R̃A(X̃)

(x), ν
R̃A(X̃)

(x)〉|x ∈ U};
R̃A(X̃) = {〈x, µ

R̃A(X̃)(x), ν
R̃A(X̃)(x)〉|x ∈ U}.

where
µ

R̃A(X̃)
(x) = ∨

y∈U
φ(1 − µ

R̃A
(x, y), µ

X̃
(y)),

ν
R̃A(R̃)

(x) = ∧
y∈U

θ(1 − ν
R̃A

(x, y), ν
X̃

(y));

µ
R̃A(X̃)(x) = ∧

y∈U
θ(1 − ν

R̃A
(x, y), µ

X̃
(y)),

ν
R̃A(X̃)(x) = ∨

y∈U
φ(1 − µ

R̃A
(x, y), ν

X̃
(y)).

From the above definition of IF rough approximation,
the following important properties in T equivalence
information systems have been proved.

Proposition 2.2. Let Ĩ = (U, AT, V, f, z) be an IF T
equivalence information system. X̃, Ỹ ∈ IF (U), α =
(α1, α2) then its �-upper and �-lower approximations
satisfy the following properties.

(1) R̃A(∼ X̃) = ∼R̃A(X̃), R̃A(∼ X̃) =∼ R̃A(X̃).

(2) R̃A(X̃) ⊆ X̃ ⊆ R̃A(X̃).

(3) R̃A(X̃ ∩ Ỹ ) = R̃A(X̃) ∩ R̃A(Ỹ ), R̃A(X̃ ∪ Ỹ ) =
R̃A(X̃) ∪ R̃A(Ỹ ).

(4) X̃ ⊆ Ỹ ⇒ R̃A(X̃) ⊆ R̃A(Ỹ ) and R̃A(X̃) ⊆ R̃A(Ỹ ).

(5) R̃A(X̃ ∪ Ỹ ) ⊇ R̃A(X̃) ∪ R̃A(Ỹ ), R̃A(X̃ ∩ Ỹ ) ⊆
R̃A(X̃) ∪ R̃A(Ỹ ).

(6) R̃A(α̃) = α̃, R̃A(α̃) = α̃.

In particular, R̃A(1̃∅) = R̃A(1̃∅) = 1̃∅,

R̃A(1̃U ) = R̃A(1̃U ) = 1̃U .

(7) R̃A(R̃A(X̃)) = R̃A(X̃), R̃A(R̃A(X̃)) = R̃A(X̃).

3. Knowledge granulation in IF T equivalence
information systems

In this section, we will introduce the definition of
granulation of knowledge in T equivalence information
systems, and discuss some important properties.

Definition 3.1. Let Ĩ = (U, AT, V, f, z) be an IF T
equivalence information system, A ⊆ AT , R̃A be an
IF T equivalence relation, U/R̃A = {[xi]R̃A

|xi ∈ U} be
the classification. And we can define the IF cardinality
of [xi]R̃A

as following:

C̃ard|[xi]R̃A
| = (|µ[xi]

R̃A

|, |ν[xi]
R̃A

|),

where |µ[xi]
R̃A

| =
n∑

j=1
µ

R̃A(i,j) and |ν[xi]
R̃A

| =
n∑

j=1
ν
R̃A(i,j).
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Definition 3.2. Let Ĩ = (U, AT, V, f, z) be an IF T
equivalence information system, A ⊆ AT , R̃A be an IF
T equivalence relation, and U/R̃A = {[xi]R̃A

|xi ∈ U}
be the classification. Granulation of knowledge R̃ is
defined as

G̃K(R̃A) = 1

2|U|2
|U|∑
i=1

(|µ[xi]
R̃A

| + |1 − ν[xi]
R̃A

|).

Theorem 3.1. Let Ĩ = (U, AT, V, f, z) be an IF
T equivalence information system, A, B ⊆ AT , and
U/R̃A = {[xi]R̃A

|xi ∈ U}, U/R̃B = {[xi]R̃B
|xi ∈ U} be

classification of two IF T equivalence relations R̃A

and R̃B, respectively. If exists a bijective map h :
U/R̃A → U/R̃B, such that |[xi]R̃A

| = |h([xi]R̃A
)|, then

G̃K(R̃A) = G̃K(R̃B).

Proof. It can be achieved by Definition 3.1. �

Corollary 3.1. Let Ĩ = (U, AT, V, f, z) be an IF T
equivalence information system, A, B ⊆ AT , R̃A and
R̃B be two IF T equivalence relation. If R̃A = R̃B, then
G̃K(R̃A) = G̃K(R̃B).

Theorem 3.2. Let Ĩ = (U, AT, V, f, z) be an IF
T equivalence information system, A, B ⊆ AT , and
U/R̃A = {[xi]R̃A

|xi ∈ U}, U/R̃B = {[xi]R̃B
|xi ∈ U} be

classification of two IF T equivalence relations R̃A

and R̃B, respectively. If R̃A � R̃B, then G̃K(R̃A) ≤
G̃K(R̃B).

Proof. Since R̃A � R̃B, we can have that for all
xi ∈ U, [xi]R̃A

⊆ [xi]R̃B
. So |µ[xi]

R̃A

| + |1 − ν[xi]
R̃A

| ≤
|µ[xi]

R̃B

| + |1 − ν[xi]
R̃B

|. Thus, the following holds. i.e.,

G̃K(R̃A) = 1

2|U|2
|U|∑
i=1

(|µ[xi]
R̃A

| + |1 − ν[xi]
R̃A

|)

≤ 1

2|U|2
|U|∑
i=1

(|µ[xi]
R̃B

| + |1 − ν[xi]
R̃B

|)

= G̃K(R̃B). �

Example 3.1. (Continued from Example 2.1) By com-
puting, we have that

G̃K(R̃AT ) = 1

2 × 52 (7.6 + 7.5

+ 7.85 + 7.95 + 6.6) = 0.75,

G̃K(R̃A) = 1

2 × 102 (7.6 + 7.6

+ 8.2 + 8.15 + 6.65) = 0.764,

Obviously, G̃K(R̃AT ) ≤ G̃K(R̃A).

Corollary 3.2. Let Ĩ = (U, AT, V, f, z) be an IF T
equivalence information system, A, B ⊆ AT , and R̃A,
R̃B be two IF T equivalence relations. If R̃A ≺ R̃B, then
G̃K(R̃A) < G̃K(R̃B).

Corollary 3.3. Let Ĩ = (U, AT, V, f, z) be an IF T
equivalence information system, A, B ⊆ AT , and R̃A,
R̃B be two IF T equivalence relations. If R̃A � R̃B and
G̃K(R̃A) = G̃K(R̃B), then R̃A = R̃B.

Theorem 3.3. Let Ĩ = (U, AT, V, f, z) be an IF T
equivalence information system. A ⊆ AT , and R̃A be
an IF T equivalence relation. The minimum of knowl-
edge granulation of Ĩ is 1/|U|. This value is achieved
if and only if R̃A = ĨR.

Proof. Since U/ĨR = {[xi]ĨR
= 1̃{xi}|xi ∈ U}. So we

have

G̃K(ĨR) = 1

2|U|2
|U|∑
i=1

(|µ[xi]
ĨR

| + |1 − ν[xi]
ĨR

|)

= 1

2|U|2
|U|∑
i=1

(1 + 1) = 1

|U|2 .

Thus, G̃K(ĨR) = 1
|U|2 . �

Theorem 3.4. Let Ĩ = (U, AT, V, f, z) be an IF T
equivalence information system. A ⊆ AT , and R̃A be
an IF T equivalence relation. The maximum of knowl-
edge granulation of Ĩ is 1. This value is achieved if and
only if R̃A = δ̃R.

Proof. Since U/δ̃R = {[xi]δ̃R
= 1̃U |xi ∈ U}. So we

have

G̃K(δ̃R) = 1

2|U|2
|U|∑
i=1

(|µ[xi]
δ̃R

| + |1 − ν[xi]
δ̃R

|)

= 1

2|U|2
|U|∑
i=1

(|U| + |U|) = 1.

Thus, G̃K(ĨR) = 1. �
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Theorem 3.5. Let Ĩ = (U, AT, V, f, z) be an IF T
equivalence information system. A ⊆ AT , and R̃A be
an IF T equivalence relation.The knowledge granu-
lation G̃K(R̃A) exists the boundedness, i.e., 1/|U| ≤
G̃K(R̃A) ≤ 1. Where G̃K(R̃A) = 1/|U| if and only if
R̃A = ĨR, and G̃K(R̃A) = 1 if and only if R̃A = δ̃R.

Proof. It can be obtained by Theorems 3.3 and 3.4. �

Theorem 3.6. Let Ĩ = (U, AT, V, f, z) be an IF
T equivalence information system. A ⊆ AT , and
U/R̃A = {[xi]R̃A

|xi ∈ U} be classification of IF T
equivalence relation R̃A. If some knowledge granule
[xi]R̃A

(xi ∈ U) can be resolved into two new knowl-
edge granules, and else knowledge granule have no

change, where we denote the new knowledge by R̃
′
A,

then G̃K(R̃′
A) ≤ G̃K(R̃A).

Proof. Assume that [xi]R̃A
of U/R̃A can be resolved into

[xi]
R̃

′
A

and [xj]
R̃

′
A

(i < j), where [xi]R̃A
= [xi]

R̃
′
A

∪
[xj]

R̃
′
A

, and [xi]
R̃

′
A

⊆ [xi]R̃A
, [xj]

R̃
′
A

⊆ [xj]
R̃A

. So,

we have

U/R̃
′
A = {[x1]

R̃A
, [x2]

R̃A
, · · · , [xi]

R̃
′
A

,

· · · , [xj]
R̃

′
A

, · · · , [x|U|]R̃A
}.

That is to say,

G̃K(R̃A) = 1

2|U|2
|U|∑
t=1

(|µ[xt ]
R̃A

| + |1 − ν[xt ]
R̃A

|)

= 1

2|U|2
i−1∑
t=1

(|µ[xt ]
R̃A

| + |1 − ν[xt ]
R̃A

|)

+ 1

2|U|2 (|µ[xi]
R̃A

| + |1 − ν[xi]
R̃A

|)

+ 1

2|U|2
j−1∑

t=i+1

(|µ[xt ]
R̃A

| + |1 − ν[xt ]
R̃A

|)

+ 1

2|U|2 (|µ[xj]
R̃A

| + |1 − ν[xj]
R̃A

|)

+ 1

2|U|2
|U|∑

t=j+1

(|µ[xt ]
R̃A

| + |1 − ν[xt ]
R̃A

|)

≥ 1

2|U|2
i−1∑
t=1

(|µ[xt ]
R̃A

| + |1 − ν[xt ]
R̃A

|)

+ 1

2|U|2 (|µ[xi]
R̃

′
A

| + |1 − ν[xi]
R̃

′
A

|)

+ 1

2|U|2
j−1∑

t=i+1

(|µ[xt ]
R̃A

| + |1 − ν[xt ]
R̃A

|)

+ 1

2|U|2 (|µ[xj]
R̃

′
A

| + |1 − ν[xj]
R̃

′
A

|)

+ 1

2|U|2
|U|∑

t=j+1

(|µ[xt ]
R̃A

| + |1 − ν[xt ]
R̃A

|)

= G̃K(R̃′
A)

Thus, G̃K(R̃′
A) ≤ G̃K(R̃A). �

Corollary 3.4. Let Ĩ = (U, AT, V, f, z) be an IF T
equivalence information system, A ⊆ AT , R̃A be an
IF T equivalence relation. If R̃A can be resolved into a

new knowledge R̃
′
A, then G̃K(R̃′

A) ≤ G̃K(R̃A).

Theorem 3.7. Let Ĩ = (U, AT, V, f, z) be an IF
T equivalence information system, A ⊆ AT , and
U/R̃A = {[xi]R̃A

|xi ∈ U} be classification of IF T
equivalence relation R̃A. If a new knowledge granule
can be composed of two knowledge granules of R̃A,
and else knowledge granules have no change, where

we denote the new knowledge by R̃
′′
A, then G̃K(R̃A) ≤

G̃K(R̃′′
A).

Proof. Assume that [xi]
R̃

′′
A

can be composed of

[xi]R̃A
and [xj]

R̃A
of U/R̃A (i.j < k), where [xk]

R̃
′′

A

=
[xi]R̃A

∪ [xj]
R̃A

, and [xk]
R̃A

⊆ [xk]
R̃

′′
A

. So, we have

U/R̃
′′
A = {[x1]

R̃A
, [x2]

R̃A
, . . . , [xi]R̃A

, . . . , [xj]
R̃A

,

. . . , [xk]
R̃

′′
A

, . . . , [x|U|]R̃A
}. That is to say,

G̃K(R̃A) = 1

2|U|2
|U|∑
t=1

(|µ[xt ]
R̃A

| + |1 − ν[xt ]
R̃A

|)

= 1

2|U|2
k−1∑
t=1

(|µ[xt ]
R̃A

| + |1 − ν[xt ]
R̃A

|)

+ 1

2|U|2 (|µ[xk]
R̃A

| + |1 − ν[xk]
R̃A

|)

+ 1

2|U|2
|U|∑

t=k+1

(|µ[xt ]
R̃A

| + |1 − ν[xt ]
R̃A

|)
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≤ 1

2|U|2
k−1∑
t=1

(|µ[xt ]
R̃A

| + |1 − ν[xt ]
R̃A

|)

+ 1

2|U|2 (|µ[xk]
R̃

′′
A

| + |1 − ν[xk]
R̃

′′
A

|)

+ 1

2|U|2
|U|∑

t=k+1

(|µ[xt ]
R̃A

| + |1 − ν[xt ]
R̃A

|)

= G̃K(R̃′
A)

Thus, G̃K(R̃A) ≤ G̃K(R̃′′
A). �

Corollary 3.5. Let Ĩ = (U, AT, V, f, z) be an IF
T equivalence information system, A ⊆ AT , and
U/R̃A = {[xi]R̃A

|xi ∈ U} be classification of IF T

equivalence relation R̃A. If a new knowledge R̃
′′
A can

be composed of R̃A, then G̃K(R̃A) ≤ G̃K(R̃′′
A).

From the above conclusions, it can be shown that a
knowledge granulation provides an important approach
to measuring the discernibility ability of a knowledge in
IF T equivalence information systems. The smaller the
knowledge granulation is, the stronger its discernibility
ability is.

4. Knowledge entropy in IF T equivalence
information systems

In this section, the definitions of knowledge rough
entropy and knowledge information entropy will be pro-
posed in IF T equivalence information systems, and
some important properties are investigated.

4.1. Knowledge rough entropy in IF T equivalence
information systems

Definition 4.1. Let Ĩ = (U, AT, V, f, z) be an IF T
equivalence information system. A ⊆ AT , U/R̃A =
{[xi]R̃A

|xi ∈ U} be classification of IF T equivalence

relation R̃A. Rough entropy of knowledge R̃A, which
is denoted by Ẽr(R̃A), is defined by

Ẽr(R̃A) = −
|U|∑
i=1

1

|U| log2
2

|µ[xi]
R̃A

| + |1 − ν[xi]
R̃A

| .

Theorem 4.1. Let Ĩ = (U, AT, V, f, z) be an IF
T equivalence information system, A, B ⊆ AT , and

U/R̃A = {[xi]R̃A
|xi ∈ U}, U/R̃B = {[xi]R̃B

|xi ∈ U} be

classification of two IF T equivalence relations R̃A and
R̃B respectively. We can have the following conclusions.

(1) If |U/R̃A| = |U/R̃B|, and it exists a bijective
map h : U/R̃A → U/R̃B, such that |[xi]R̃A

| =
|h([xi]R̃A

)|, then Ẽr(R̃A) = Ẽr(R̃B).

(2) If R̃A � R̃B, then Ẽr(R̃A) ≤ Ẽr(R̃B).
(3) Rough entropy of knowledge R̃A exists the

boundary, i.e., 0 ≤ Ẽr(R̃A) ≤ log2 |U|. Where
Ẽr(R̃A) = 0 if and only if R̃A = ĨR, and Ẽr(R̃A) =
log2 |U| if and only if R̃A = δ̃R.

(4) If R̃A can be resolved into a new knowledge R̃
′
A,

then Ẽr(R̃
′
A) ≤ Ẽr(R̃A).

(5) If a new knowledge R̃
′′
A can be composed of R̃A,

then Ẽr(R̃A) ≤ Ẽr(R̃
′′
A).

Proof. The proofs of them are similar to Theorems
3.1–3.7. �

Example 4.1. (Continued from Example 2.1) By com-
puting, we have that

Ẽr(R̃AT ) = 1

5
log2 3.8 + 1

5
log2 3.75 + 1

5
log2 3.925

+ 1

5
log2 3.975 + 1

5
log2 3.3 = 1.904;

Ẽr(R̃A) = 1

5
log2 3.8 + 1

5
log2 3.8 + 1

5
log2 4.1

+ 1

5
log2 4.075 + 1

5
log2 3.325 = 1.930.

So, Ẽr(R̃AT ) ≤ Ẽr(R̃A).

4.2. Knowledge information entropy in IF T
equivalence information systems

Definition 4.2. Let Ĩ = (U, AT, V, f, z) be an IF T
equivalence information system. A ⊆ AT , U/R̃A =
{[xi]R̃A

|xi ∈ U} be classification of IF T equivalence

relation R̃A. Information entropy of knowledge R̃A,
which is denoted by Ẽ(R̃A), is defined by

Ẽ(R̃A) =
|U|∑
i=1

1

|U|

(
1 −

|µ[xi]
R̃A

| + |1 − ν[xi]
R̃A

|
2|U|

)
.
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Theorem 4.2. Let Ĩ = (U, AT, V, f, z) be an IF
T equivalence information system, A, B ⊆ AT , and
U/R̃A = {[xi]R̃A

|xi ∈ U}, U/R̃B = {[xi]R̃B
|xi ∈ U} be

classification of two IF T equivalence relation R̃A and
R̃B respectively. We can have the following conclusions.

(1) If |U/R̃A| = |U/R̃B|, and it exists a bijective
map h : U/R̃A → U/R̃B, such that |[xi]R̃A

| =
|h([xi]R̃A

)|, then Ẽ(R̃A) = Ẽ(R̃B).

(2) If R̃A � R̃B, then Ẽ(R̃A) ≥ Ẽ(R̃B).
(3) Information entropy of knowledge R̃A exists

the boundary, i.e., 0 ≤ Ẽ(R̃A) ≤ 1 − 1
|U| . Where

Ẽ(R̃A) = 1 − 1
|U| if and only if R̃A = ĨR, and

Ẽ(R̃A) = 0 if and only if R̃A = δ̃R.

(4) If R̃A can be resolved into a new knowledge R̃
′
A,

then Ẽ(R̃′
A) ≥ Ẽ(R̃A).

(5) If a new knowledge R̃
′′
A can be composed of R̃A,

then Ẽ(R̃A) ≥ Ẽ(R̃′′
A).

Proof. The proofs of them are similar to Theorems
3.1–3.7. �

Example 4.2. (Continued from Example 2.1) By com-
puting, we have that

Ẽ(R̃AT ) = 1

5
[(1 − 0.76) + (1 − 0.75) + (1 − 0.785)

+ (1 − 0.795) + (1 − 0.66)] = 0.25;

Ẽ(R̃A) = 1

5
[(1 − 0.76) + (1 − 0.76) + (1 − 0.82)

+ (1 − 0.815) + (1 − 0.665)] = 0.236.

Thus, we have Ẽ(R̃AT ) ≥ Ẽ(R̃A).

5. Knowledge uncertainly measure in IF T
equivalence information systems

In this section, another uncertainty measure will
be introduced, which can provide another important
approach to measuring the discernibility ability of a
knowledge in IF T equivalence information systems.

Definition 5.1. Let Ĩ = (U, AT, V, f, z) be an IF T
equivalence information system. A ⊆ AT , U/R̃A =
{[xi]R̃A

|xi ∈ U} be classification of IF T equivalence

relation R̃A. Uncertainty measure of knowledge R̃A,
which is denoted as Ẽ(R̃A), is defined by

G̃(R̃A) = −
|U|∑
i=1

1

|U| log2

|µ[xi]
R̃A

| + |1 − ν[xi]
R̃A

|
2|U| .

Theorem 5.1. Let Ĩ = (U, AT, V, f, z) be an IF
T equivalence information system, A, B ⊆ AT , and
U/R̃A = {[xi]R̃A

|xi ∈ U}, U/R̃B = {[xi]R̃B
|xi ∈ U} be

classification of two IF T equivalence relation R̃A and
R̃B respectively. We can have the following conclusions.

(1) If |U/R̃A| = |U/R̃B|, and it exists a bijective
map h : U/R̃A → U/R̃B, such that |[xi]R̃A

| =
|h([xi]R̃A

)|, then G̃(R̃A) = G̃(R̃B).

(2) If R̃A � R̃B, then G̃(R̃A) ≥ G̃(R̃B).
(3) Information entropy of knowledge R̃A exists

the boundary, i.e., 0 ≤ G̃(R̃A) ≤ log2 |U|. Where
G̃(R̃A) = log2 |U| if and only if R̃A = ĨR, and
G̃(R̃A) = 0 if and only if R̃A = δ̃R.

(4) If R̃A can be resolved into a new knowledge R̃
′
A,

then G̃(R̃′
A) ≥ G̃(R̃A).

(5) If a new knowledge R̃
′′
A can be composed of R̃A,

then G̃(R̃A) ≥ G̃(R̃′′
A).

Proof. The proof of them are similar to Theorems
3.1–3.7. �

Example 5.1. (Continued from Example 2.1) By com-
puting, we have that

G̃(R̃AT ) = −1

5
[(log2(0.76)) + (log2(0.75))

+ (log2(0.785)) + (log2(0.795))

+ (log2(0.66))] = 0.418;

G̃(R̃A) = −1

5
[(log2(0.76)) + (log2(0.76))

+ (log2(0.82)) + (log2(0.815))

+ (log2(0.665))] = 0.392.

Thus, we have G̃(R̃AT ) ≥ G̃(R̃A).

6. Relationships among knowledge granulation,
knowledge entropy and uncertainty measure

In this section, we will discuss the relationships
among knowledge granulation, knowledge entropy and
uncertainty measure.
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Theorem 6.1. Let Ĩ = (U, AT, V, f, z) be an IF T
equivalence information system. A ⊆ AT , U/R̃A =
{[xi]R̃A

|xi ∈ U} be classification of IF T equivalence

relation R̃A. The relation of knowledge granulation
G̃K(R̃A) and information entropy Ẽ(R̃A) of knowledge
R̃A is

G̃K(R̃A) + Ẽ(R̃A) = 1.

Proof. Since U/R̃A = {[xi]R̃A
|xi ∈ U} is classification

of IF T equivalence relation R̃A, we have

G̃K(R̃A) + Ẽ(R̃A)

= 1

2|U|2
|U|∑
i=1

(|µ[xi]
R̃A

| + |1 − ν[xi]
R̃A

|)

+
|U|∑
i=1

1

|U|

(
1 −

|µ[xi]
R̃A

| + |1 − ν[xi]
R̃A

|
2|U|

)

=
|U|∑
i=1

( |µ[xi]
R̃A

| + |1 − ν[xi]
R̃A

|
2|U|2

)

+
|U|∑
i=1

(
1

|U| −
|µ[xi]

R̃A

| + |1 − ν[xi]
R̃A

|
2|U|2

)

=
|U|∑
i=1

1

|U| = 1. �

Example 6.1. (Continued from Example 3.1 and Exam-
ple 4.2) In Examples 3.1 and 4.2, we have acquired
that

G̃K(R̃AT ) = 0.75, G̃K(R̃A) = 0.764;

Ẽ(R̃AT ) = 0.25, Ẽ(R̃A) = 0.236.

So, the following is obvious

G̃K(R̃AT ) + Ẽ(R̃AT ) = 1,

G̃K(R̃A) + Ẽ(R̃A) = 1.

Theorem 6.2. Let Ĩ = (U, AT, V, f, z) be an IF T
equivalence information system. A ⊆ AT , U/R̃A =
{[xi]R̃A

|xi ∈ U} be classification of IF T equivalence

relation R̃A. Relationship between uncertainty measure
G̃(R̃A) and rough entropy Ẽr(R̃A) of knowledge R̃A is

G̃(R̃A) + Ẽr(R̃A) = log2 |U|.

Proof. Because U/R̃A = {[xi]R̃A
|xi ∈ U} is classifica-

tion of IF T equivalence relation R̃A, we have

G̃(R̃A) + Ẽr(R̃A)

= −
|U|∑
i=1

1

|U| log2

|µ[xi]
R̃A

| + |1 − ν[xi]
R̃A

|
2|U|

+
⎛⎝−

|U|∑
i=1

1

|U| log2
2

|µ[xi]
R̃A

| + |1 − ν[xi]
R̃A

|

⎞⎠
= −

|U|∑
i=1

1

|U| [log2(|µ[xi]
R̃A

| + |1 − ν[xi]
R̃A

|)

− log2(2|U|)]

−
|U|∑
i=1

1

|U| [1 − log2(|µ[xi]
R̃A

| + |1 − ν[xi]
R̃A

|)]

=
|U|∑
i=1

1

|U| (log2(2|U|) − 1)

=
|U|∑
i=1

1

|U| (log2(|U|))

= log2(|U|). �

Example 6.2. (Continued from Example 5.1 and Exam-
ple 4.1) In Examples 5.1 and 4.1, we have acquired
that

G̃(R̃AT ) = 0.418, G̃(R̃A) = 0.392;

Ẽr(R̃AT ) = 1.904. Ẽr(R̃A) = 1.930.

So, the following is obvious

G̃(R̃AT ) + Ẽr(R̃AT ) = 2.322 = log2 |U|,

G̃(R̃A) + Ẽr(R̃A) = 2.322 = log2 |U|.

7. Uncertainty measure of rough sets in IF T
equivalence information systems

In this section, we will introduce the definitions of
roughness measure and accuracy measure of rough sets
in IF T equivalence information systems by general-
izing the classical rough degree of Pawlak rough set,
and through two illustrative examples,we find the lim-
itations of roughness measure and accuracy measure
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for evaluating uncertainty of a set and approximation
accuracy of a rough classification in IF T equivalence
information systems. In order to overcome the limita-
tions, the concept of rough entropy will be proposed in
IF T equivalence information systems.

Definition 7.1. Let Ĩ = (U, AT, V, f, z) be an IF T
equivalence information system. A ⊆ AT , R̃A be an
IF T equivalence relation, The roughness measure of
X̃ is defined by

ρ
R̃A

(X̃) = 1 −
|µ

R̃A(X̃)| + |1 − ν
R̃A(X̃)|

|µ
R̃A(X̃)

| + |1 − ν
R̃A(X̃)

| ,

where X̃ /= 1̃∅ and | · | denotes the cardinality of an IF
set. For convenience, we preside ρ

R̃A
(1̃∅) = 1.

The accuracy measure of X̃ is defined by



R̃A

(X̃) = 1 − ρ
R̃A

(X̃) =
|µ

R̃A(X̃)| + |1 − ν
R̃A(X̃)|

|µ
R̃A(X̃)

| + |1 − ν
R̃A(X̃)

| .

Example 7.1. (Continued form Example 2.1) In
Example 2.1, we have known U/R̃AT ⊆ U/R̃A,
i.e., classification U/R̃AT is finer than classifica-
tion U/R̃A in the system. Consider the IF t-norm
T : T (α̂, β̂) = (T (α1, β1), S(α2, β2)), where α̂ =
(α1, α2), β̂ = (β1, β2), T (α1, β1) = max{0, α1 + β1 −
1}, S(α2, β2) = min{1, α2 + β2}. for X̃

′ = {(0.2, 0.7),
(0.4, 0.5), (0.5, 0.2), (0.7, 0.2), (1.0, 0)}. Then we can

calculate the R̃AT (X̃′ ), R̃AT (X̃′ ), R̃A(X̃′ ) and R̃A(X̃′ )
as follows:

R̃AT (X̃′ ) = R̃A(X̃′ )

= {(0.5, 0.4), (0.4, 0.4), (0.6, 0.2),

(0.7, 0.2), (1.0, 0)};
R̃AT (X̃′ ) = R̃A(X̃′ )

= {(0.2, 0.7), (0.35, 0.5), (0.4, 0.4),

(0.45, 0.4), (0.7, 0.2)}.
Thus, by calculating, the rough degrees of X̃

′ about
knowledge R̃AT and R̃A can be obtained respectively,

which are ρ
R̃AT

(X̃′ ) = ρ
R̃AT

(X̃′ ) = 20
71 .

In other words, the uncertainty of knowledge R̃A is
larger than that of R̃AT in Example 2.1, but X

′
has the

same rough degree. Therefore, it is necessary to find a
new and more accurate uncertainty measure for rough
sets in IF T equivalence information systems.

In the next, the concept of rough entropy will be pro-
posed, and it will be shown that it is a new and more
accurate uncertainty measure for rough sets in IF T
equivalence information systems.

Definition 7.2. Let Ĩ = (U, AT, V, f, z) be an IF T
equivalence information system. A ⊆ AT , R̃A be an IF
T equivalence relation, the rough entropy of X̃ about
knowledge R̃A is defined as follows:

E
R̃A

(X̃) = ρ
R̃A

(X̃) · G̃K(R̃A).
Furthermore, the following property can be obtained

about the entropy of rough sets.

Theorem 7.1. Let Ĩ = (U, AT, V, f, z) be an IF
T equivalence information system, A, B ⊆ AT , and
U/R̃A = {[xi]R̃A

|xi ∈ U}, U/R̃B = {[xi]R̃B
|xi ∈ U} be

classification of two IF T equivalence relation R̃A and
R̃B respectively. We can have the following conclusions.

(1) If |U/R̃A| = |U/R̃B|, and it exists a bijective
map h : U/R̃A → U/R̃B, such that |[xi]R̃A

| =
|h([xi]R̃A

)|, then E
R̃A

(X̃) = E
R̃B

(X̃).

(2) If R̃A � R̃B, then E
R̃A

(X̃) ≤ E
R̃B

(X̃).

(3) Rough entropy of X̃ about knowledge R̃A

exists the boundary, i.e., 0 ≤ E
R̃A

(X̃) ≤ 1. Where

E
R̃A

(X̃) = 0 if and only if R̃A = ĨR, and

E
R̃A

(X̃) = 1 if and only if R̃A = δ̃R

(4) If R̃A can be resolved into a new knowledge R̃
′
A,

then E
R̃

′
A

(X̃) ≤ E
R̃A

(X̃).

(5) If a new knowledge R̃
′′
A can be composed of R̃A,

then E
R̃A

(X̃) ≤ E
R̃

′′
A

(X̃).

Proof. The proofs of them can be acquired directly by
Theorems 3.1–3.7 and Definition 7.1. �

From the above, the rough entropy of rough sets is
related not only to its own rough degree, but also to the
uncertainty of knowledge in IF T equivalence informa-
tion systems.

Example 7.2. (Continued form Example 7.1) The rough
entropy of X̃

′
in Example 7.1 is calculated about knowl-

edge R̃AT and R̃A, respectively, which are

E
R̃AT

(X̃
′
) = ρ

R̃AT
(X̃

′
) · G̃K(R̃AT )

= 0.75 × 0.82 = 0.615,
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E
R̃A

(X̃
′
) = ρ

R̃A
(X̃

′
) · G̃K(R̃A)

= 0.764 × 0.82 = 0.626.

Thus, we have

E
R̃AT

(X̃
′
) < E

R̃A
(X̃

′
).

8. Conclusion

Atanassov’s intuitionistic fuzzy T equivalence infor-
mation systems are more material and concise to
describe the essence of fuzziness. Thus, the uncertainty
measure method of knowledge is one of the most impor-
tant research tasks in Atanassov’s intuitionistic fuzzy T
equivalence information systems. In this paper, we con-
sidered the binary relation and the boundary of a rough
set of the uncertainty of knowledge from two aspects.
In binary relation aspect, we introduced the concepts of
knowledge granulation, knowledge entropy and knowl-
edge uncertainty measure in Atanassov’s intuitionistic
fuzzy T equivalence information systems, and dis-
cussed some important properties of them. From these
properties, it can be shown that these measures provided
some important approaches to measuring the discerni-
bility ability of different knowledges in Atanassov’s
intuitionistic fuzzy T equivalence information systems.
In boundary of a rough set aspect, we introduced a nat-
ural extension of classical rough degree to measure the
roughness of rough sets in Atanassov’s intuitionistic
fuzzy T equivalence information systems, and by an
example, we found the limitations of roughness mea-
sure and accuracy measure for evaluating uncertainty of
a set and approximation accuracy of a rough classifica-
tion. Thus the concept of rough entropy was proposed
in Atanassov’s intuitionistic fuzzy T equivalence infor-
mation systems, which was more accurate than natural
extension of classical rough degree to measure the
roughness of rough sets. These results will be helpful
for understanding of the essence of uncertainty mea-
sure in Atanassov’s intuitionistic fuzzy T equivalence
information systems.
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